
JOURNAL OF APPROXIMATION THEORY 46, 119-128 (1986)

On the Work of G. Freud in the Theory
of Interpolation of Functions

JOZSEF SZABADOS

Mathematical Institute, H-1053 Budapest,
Reattanoda utca 13-15, Hungary

Communicated by Paul G. Nevai

Received April 4, 1984; revised December 10, 1984

DEDICATED TO THE MEMORY OF GEZA FREUD

The theory of interpolation of functions has been traditionally a favorite
subject in Hungary. Starting with the famous result of L. Fej6r, many
Hungarian mathematicians contributed to this fruitful branch of
approximation theory: E. Feldheim, G. Grunwald, P. Erdos, P. Turan, L.
Kalmar, P. Szasz, and their disciples from the younger generation.
Although only about ten percent of his papers are devoted to interpolation
theory, G6za Freud made significant progress in this field.

LAGRANGE INTERPOLATION

Let

(n=1,2,oo.) ( )

be the nodes of interpolation,

lkn(x) = fI X-X in
i~l Xkn-Xin
i*k

the corresponding fundamental polynomials, and

n

An(x) = L 11kn(x)1
k~l

the Lebesgue-function of interpolation. A classical result of Szego states
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that if the nodes (1) are the roots of the Jacobi polynomials p~",fJ)(x)

(Ct, f3 > -1), then

(2)

uniformly in every closed subinterval of (-1,1), Freud [1] proved that (2)
remains true if (1) are the roots of the polynomials Pn(x) orthonormal with
respect to the weight function w(x) satisfying

O<m~w(x)~M (3)

in closed subintervals of ( -1, 1), provided

(n = 1, 2,.,,). (4)

This generalization of Szego's result has a consequence for the convergence
of the corresponding interpolating polynomials. Freud also proved [3]
that under the conditions (3H 4), for the interpolating polynomials

n

Ln(f, x) ~f L: j(Xkn) lkn(x)
k~l

one has

lim L~m)(f, x) = j(m)(x)
n~ 00

uniformly in every closed subinterval [a, b] c ( -1, 1) provided

(5)

If the weight function w(x) satisfies only the lower restriction in (3) then
(5) holds only if j(m)(x) satisfies the stronger condition

instead of (6).
Another interesting problem of this theory: what happens if we add the

endpoints ±1 to the nodes (1) which are the roots of orthogonal
polynomials with support on [-1,1]. Freud [12] proved that if w(x)~
m(l_x2)1/2 (m>O), S~1(w(x)/(1-X2)1/2)dx<oo,andj(x)E1iP!, then
this extended Lagrange interpolation tends uniformly to j(x) on [ -1, 1].
In the conditions of this statement the weight function w(x) is compared to
the weight (1 - X2)1/2 of the Chebyshev polynomials of second kind. This
was generalized later by Vertesi [33] for Jacobi weights.

Freud was also interested in the mean convergence of Lagrange inter-
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polation. Let a(x) be a real-valued nondecreasing bounded function defined
for all real values of x, having infinitely many points of increase, and being
uniquely defined by its moments fCXJooxnda(x) (n=O, 1,2,... ). The
Lebesgue-Stieltjes measure da generated by a(x) is called "m-distribution."
Let (1) be the roots of the orthogonal polynomials with respect to dll.
Generalizing earlier results of Erdos, Turan, and Shohat, Freud [5 ]
proved that

providedf(x) is of polynomial growth at ±oo, and SCXJ oof(x)2diX(x) exists.
Moreover, the condition about the polynomial growth can be replaced by
a more general condition. (The mean convergence of Lagrange inter­
polation was later widely investigated by Nevai, see, e.g., [23].)

The significance of this result is that da may have noncompact support.
The investigation of Lagrange interpolation on infinite intervals raised new
and unexpected difficulties, especially when one is concerned with
pointwise convergence. Let (1) be the roots of the Hermite polynomials
orthogonal to the weight-function e- x2

• Then [13]

If(x) - Ln(f, x) ~ Kr(log n + ex2
/
2

) wr(f; n-

+21Ifll(2je)"/2ex
2/2 (- 00 < x < 00),

where W r (f.) is the rth modulus of smoothness of the functionf(x), Ilfli =
sup ~oo < x < 00 If(x)l, and Kr depends only on r. Furthermore, this estimate is
best possible, as for the order of convergence. These results were
generalized later by Nevai [22] for Laguerre nodes, and by Kis [19] for
the Markov-Sonin nodes.

Freud considered more general weights on (- 00, 00) also. Let the
weight-function w(x) satisfy

w(x);;::: C j e- C2x2
(- 00 < x < 00),

- CD

with some positive constants Cj, C2 , and C 3 . Then [8] the weighted
estimate

lim e-(1/2)c2x
2[f(x) - LnU; x)] = 0

n --> 00

holds uniformly in (- 00, 00) for the corresponding Lagrange inter­
polation, providedf(x) is uniformly bounded and uniformly continuous on
( - 00, 00) and f(x) Elip! there. A similar result holds on [0, 00) for
"Laguerre-type" weights.
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If the nodes are on a finite interval, say on [ -1, 1], then of particular
interest is the behavior of the Lagrange interpolation at the endpoints. Let
the support of the m-distribution da be [-1, 1], let Pn(x) be the
corresponding orthonormal polynomials, and assume that

Then [14]

r (l-xy- 1da(x)<<Xl
-1

(0<p~1).

where en = O(1) or en ~ 0 (n ~ <Xl) provided f(x) E Lip p or f(x) E lip p,
respectively. (Similar result holds for x = -1.) This generalizes an earlier
result of Kis established for the Chebyshev-nodes.

Freud extended the theory of strong approximation from Fourier series
to interpolation. To state a special case of one of his results [11], let da
again be an m-distribution on [ -1,1] such that (3) holds, let Pn(x) be the
corresponding orthonormal polynomials, IXn(X) a step-function with jumps
An(Xvn ) at the nodes Xvn (v = 1,..., n) (An(X vn ) are the Christoffel numbers).
Further let

r

s}.")(f,x)= L a~n)(f)pv(x)
v~O

be the partial sums of the orthonormal "interpolating" expansion of f(x)
with respect to the distribution da. (The case r = n - 1 leads to the
Lagrange interpolation.) Then the following strong approximation type
result holds:

k

L (v+1y-1If(x)-s~n)(f;x)1

v~O

k

~K(s,a,b) L (v+l)s-lEJf)
v~O

(x E [a, b] c ( -1, 1), s> 0, k < n),

where EV(f) is the best approximation of f(x) E C[ -1,1] by polynomials
of degree at most n.

As for the (C, 1) means of the Lagrange interpolation itself, it is known
that they behave better than the original interpolating polynomials
(although the contrast is not so sharp as in the case of Fourier series). In
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this connection Freud [10] proved that if the orthonormal polynomials
Pn(x) with respect to the m-distribution da on [-1, 1] satisfy

n~l

L pv(x)2=O(n)
v~O

(xEMc [-1,1]),

s~ 1 f(x)2da(x) exists and f(x) == 0 (x E [a, bJ £; [ -1, 1]) then

(
b-a)xE[a+b,b-O]nM,0<b<-2- ,

where Lv(1, x), as before, are the Lagrange interpolating polynomials based
on the roots of Pn(x). He gave estimate for the "strong Lebesgue function"

1 n

An(x) = max - L ILv(1, x)1
I[(xll ,;; 1 n v = 1

as well.

HERMITE-FEJER INTERPOLATION

While the Lagrange interpolation is never uniformly convergent for all
continuous functions whatever the system of nodes (1) is, the situation is
different for the so-caned Hermite-Fejer interpolation. Let, as before, (1)
be the roots of the polynomial Pn(x) orthogonal with respect to the weight­
function w(x) with support in [ -1,1]. Let

and

hkAx) = [1-P;tkn~ (x - x kn )] l~n(x)
Pn xkn

hkn(x) = (x - Xkn) l~n(x)

n

Hn(1, x) = L [hkn(x) f(Xkn) + hkn(x) dknJ,
k~l

(k = 1,..., n),

(k= 1, 2, ..., n),

where f(x) E C[ -1, 1J and dkn are certain numbers. It is well known that
in case of the Jacobi polynomials (i.e., when w(x)=(I-x)"(I+x)/i,
a, 13 > -1) this process uniformly converges in [ -1, 1] or in every closed
subinterval of ( -1, 1) according as max(a, 13) < 0 or max(a, f3)?; 0, respec­
tively, provided the dkn's satisfy certain growth condition. The proof of this
statement makes heavy use of the differential equation for the Jacobi
polynomials. The lack of known differential equations for a mote general
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class of weight-functions makes it difficult to generalize the convergence
theorem. Freud [2] succeeded in doing this. He proved that if w(x) E

C[ - 1, 1], w(x) satisfies the Dini-Lipschitz condition in [a, b] c ( - 1, I),
the corresponding orthonormal polynomials satisfy (3) in [a, b], and

then

o Co:n)

o[min(k, n
z
)]

lim Hn(f, x) = f(x)

for all x kn ,

(7)

for all x E (a, b) where f(x) is continuous, provided f(x) is bounded in
[-1,1] and continuous at ±1. If f(x) is continuous in (a, b) then (7)
holds uniformly in every closed subinterval of (a, b).

Moreover, if w(x) satisfies (2) in [-1,1], f(X)EC[ -1,1], and f(x)
satisfies the Dini-Lipschitz condition

then (7) holds uniformly in every closed subinterval of (a, b).
Another possibility for generalizing the convergence theorem for more

general functions is the following: Assume that for a certain pair of num­
bers iX, /3, the functions (1-xtw(x) and (l +x)f3w(x) are nondecreasing
and nonincreasing, respectively. Then [16], for a bounded f(x), if f(x) is
continuous at x E ( -1, 1), (7) holds at this point. Further, if f(x) is con­
tinuous in [a, b] c [ -1, 1) then the convergence in (7) is uniform in
[a, b].

In the opposite direction, (i.e., to what extent of conditions on w(x) we
can generalize the convergence theorem), Freud [15] proved that if for a
fixed ~E[-1,1], the function (x-~)w(x) is of bounded variation in
[-1,1] then there exists anf(x)EC[-1, 1] such that (7) does not hold
uniformly in [- 1, 1]. (Here dkn = 0, k = 1,..., n.) In the special case
w(x)= 1, he raised the following problem: Is it true that if

f(1)=f(-1)=rf(x)dx,
-1

(8)

then (7) holds uniformly in [-1, 1]? The necessity of (8) to the uniform
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convergence was shown earlier by Fejer. The answer for this problem was
given by Schonhage [26], and later generalized by Szabados [27, 28, 29]
and Vertesi [34].

LACUNARY INTERPOLATION

Though it was not in the center of his interest, Freud gave a remarkable
contribution to the theory of lacunary interpolation investigated by Tunin
and his collaborators. In the simplest case of this theory, a polynomial

n

Rn(f,x)= L: [f(xvn)rvn(x)+fivnPvn(x)]
v 1

(9)

is considered, which interpolates f(x) at the nodes X vn , and f-Jvn are
prescribed values for the second derivative. If the xvn's are the roots of the
polynomial (l-x2) p~O~Onx) and n is even, then (9) is uniquely deter­
mined. Generalizing a convergence theorem of Balazs and Turan, he
proved [4] that if w2(f, h) = o(h),

(1 vn =o(R) (v=2, ...,n-l),
1 x vn

f10n = o(n 2
), f1nn = o(n2

);

then

lim Rn(f,x)=f(x)
n --~ 00

uniformly in [ -1, 1]. A quantitative version of this statement was proved
later by Vertesi [31].

ApPLICATIONS

Interpolation procedures become more useful for practical purposes if we
loosen the strict condition of Lagrange interpolation, and permit
polynomials, of degree cn (c > 1) to interpolate at the nodes (1). In fact,
one can obtain the direct theorems of the theory of best approximation this
way. At the Oberwolfach conference in 1963, Butzer raised the problem
whether there are interpolating polynomials directly proving the Jackson
theorem. It was Freud [6] who answered first this question by con­
structing polynomials of degree 4n - 3 interpolating at (nI3) + 0(1) nodes
and approximating in the order of w(f, lin). Later, in a joint paper with
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Vertesi [9] they slightly modified the construction and obtained a
polynomial operator J'::(f, x) of degree at most 4n - 2 which interpolates at
the Chebyshev nodes cos((2k-l)/2n) 1! (k= 1,..., n), and provide a Timan
type estimate

If(x)-J::(f, x)1 ~ C [w (f,~)+w (f, ~2)] (Ixl ~ 1).

Later, this result was extended to the construction of operators based on
general Jacobi nodes, in a joint work with Sharma [17,18]. Here they
were able to decrease the degree of the operator to n(1 +8),8>°arbitrary.

His original work [6] started a flow of investigations of this type; to
name only a few, we mention related works of Kis, Vertesi [20, 30, 32],
Sallay [24], Saxena [25], and Mathur [21]. Saxena [25] was the first to

obtain the even stronger estimate Cw(J1 - x2In) by interpolation (the
famous result of Teljakowski-Gopengauz).

It is a classical result of Bernstein that to a suitable system of nodes (1)
on [-1, 1] and any 8> 0, there exists a sequence of linear operators
Ln(f, x) with the following properties: for any f(x) E C[ -1, 1],

(a) Ln(f, x) is of degree at most n(1 + 8);

(b) Ln(f, Xkn) = f(Xkn) (k = 1,..., n);

(c) limn~ 00 Ln(f, x) = f(x).

Erdos gave a necesary and sufficient condition for a system of nodes (1)
to have this property: these systems are called "Bernstein-Erdos-type." Let
us call a system (1) "well approximating", if (a) and (b) hold, and (c) is
replaced by the stronger condition

(c*) If(x) -Ln(f, x)[ ~ K(8) En(f) (Ixl ~ 1),

where K(8) depends only on 8 and the system (1). Freud [7] proved the
following interesting connection between these two characterizations: A
system (1) is well approximating if and only if it is of Bernstein-Erd6s-type.
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